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Abstract. A variety of cloud types appears in each Advanced Very High Resolution
Radiometer (AVHRR) image. Clouds may contaminate solar reflectance data to be
used for vegetation studies. This may jeopardize the accuracy of any quantitative
results from data analysis. Published cloud detection algorithms for AVHRR data
to date have mainly used data over Europe received from the National Oceanic
and Atmospheric Administration (NOAA)-12 or earlier satellites. This study exam-
ined the previously published cloud detection methods with the intent to develop
an automated cloud detection algorithm for NOAA-14 AVHRR data for Texas.
Through testing a whole year of AVHRR scenes, the Texas automated cloud
detection algorithm was capable of correctly identifying most of the cloud-
contaminated pixels except for cloud shadow pixels. The overall accuracy reached
89%. The developed algorithm includes three major steps, top-of-the-atmosphere
reflectance of channel 1, temperature difference of channels 3 and 4, and a combina-
tion of ratio of channel 2 to channel 1 and temperature in channel 4.

1. Introduction

Cloud contamination appears virtually in almost every Advanced Very High
Resolution Radiometer (AVHRR) image. Most research requires cloud-free data,
because clouds and cloud shadows influence solar reflectance data and Normalized
Difference Vegetation Index (NDVI) values derived from AVHRR data. The NDVI
data have been successfully applied to research such as vegetation monitoring
(Rasmussen 1998, Duchemin et al. 1999), primary production estimation (Ricotta and
Avena 1998, Sannier et al. 1998) and environmental change detection (Franga and
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Setzer 1998). Most of the research relied on NDVI data deems to cloud-free by
compositing daily images over a ten-day or bi-weekly time period (Holben 1986). A
short-period NDVI composite is likely to include cloud-contaminated pixels, which
may affect data analysis and may even lead to a false conclusion. Whereas, extended
periods of NDVI composites lose the advantage of high temporal resolution of AVHRR
data (Gutman 1991), and are not adequate for monitoring agricultural conditions
over a short growing season. In addition, Gutman and Ignatov (1996) found that
10-day composites were not cloud-free; moreover, two- or three-week NDVI compos-
ites were possibly cloud-contaminated. One of the alternative approaches to overcome
cloud-contaminated composites is to detect and remove pixels with cloud obstruction
from the daily AVHRR scenes.

Near-real time daily access to AVHRR data over large areas is fundamental to
prompt vegetation condition assessment. The major impetus for daily cloud detection
is the desire to obtain daily cloud-free AVHRR data and to construct short interval
cloud-free NDVI composites for research purposes. Most published cloud detection
algorithms are mainly used to study AVHRR data over Europe such as Britain and
Germany (Saunders 1986, Dech et al. 1998). The state of Texas has very different
weather conditions from central Europe. In addition, the state of Texas has experi-
enced drought conditions for the last 10 years. Some cloud detection methods
developed in Europe may not be suitable for Texas. Most cloud detection research
for AVHRR data has been conducted using data from National Oceanic and
Atmospheric Administration (NOAA)-12 or earlier satellites (Saunders 1986, Franca
and Cracknell 1995, Hutchison et al. 1997). It is thus important to develop an
automated cloud detection method for AVHRR data of Texas received from the
NOAA-14 satellite.

2. Objective

Over the years, a number of cloud detection methods has been developed using
pixel-by-pixel processing (Saunders and Kriebel 1988, Hutchison and Choe 1996,
Cracknell 1997, Hutchison et al. 1997, Dech et al. 1998). These methods use
approaches based on thresholds obtained from all five AVHRR channels as well as
systematic mathematical expressions. For general use, most cloud detection schemes
for AVHRR data involve the use of surface reflectance {(channels 1 and 2) and thermal
{(channels 3, 4 and 5) data. This involves finding high reflectance pixels in channels
1 and 2 or a ratio close to unity, and low brightness temperature in thermal channels.
Cloud detection has been based on the fact that clouds are generally bright in the
visible spectrum (channel 1) and/or cold in the infrared spectrum (channel 2) (Gutman
1992), and highly reflective in channel 3 and/or relatively cold in channels 4 and 5
(Yamanouchi and Kawaguchi 1992). Since this study mainly focused on removing
cloud-contaminated pixels to improve the accuracy of NDVI values, the cloud
detection algorithms were concerned with AVHRR data acquired during the daytime.
The objectives of this study were: (1) to apply published methods of cloud detection
to AVHRR data over the state of Texas and (2) to develop and test an automated
cloud detection algorithm for the state of Texas.

3. Methodology

AVHRR data from NOAA-14 afternoon orbits were downloaded from the High
Resolution Picture Transmission (HRPT) receiving station located at Blackland
Research and Education Center (part of Texas A&M University complex) in Temple,
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Texas. Each AVHRR scene contains five channels. Channels 1 (0.58-0.68 um) and
2 (0.73-1.1 ym) are solar reflectance channels, and channels 3 (3.5-3.9 um),
4 (10.3-11.3 ym) and 5 (11.5-12.5 um) are thermal infrared channels.

Two images (middle and end) of each month between October 1999 and
September 2000 were selected for a set of test images to derive radiometric thresholds
and to generate a new automated cloud detection algorithm. An additional two
images (about 10th and 20th day) for each month during the same period were
selected for accuracy assessment of the newly developed cloud detection algorithm.
Metadata required for further data pre-processing were retrieved from AVHRR
header files by transforming raw data to level 1b format. Automated pixel-by-pixel
pre-processing of level 1b data included radiometric calibration for five channels,
reflectance conversion for channels 1 (VIS) and 2 (NIR), NDVI computation, satellite
zenith, solar zenith and relative azimuth angle computation, and geo-reference correc-
tion. Channels 1 and 2 were calibrated and converted to the top-of-the-atmosphere
(TOA) reflectance. NDVI values derived from mathematical combination of VIS
and NIR were computed for TOA. The three thermal channels were converted from
digital counts to brightness temperatures (BT) in degrees kelvin. The three angles
were computed in degrees. A geographic information systems (GIS) mask was applied
to extract AVHRR data for Texas only.

Cloud contamination in each AVHRR scene can be roughly classified as solid
and thick clouds, optically-thin clouds, optical cirrus, cloud edges and cloud shadows
(figure 1). The solid and thick clouds consisting of larger particles of ice and/or water
are visible as bright-white colour in AVHRR images. The optically-thin clouds in
greyish white are usually composed of water particles and/or non-aqueous particles
such as smoke and dust. The cirrus clouds are composed of very small ice crystals
in the form of grains or ripples (Ahrens 1999). Each AVHRR pixel was visually
classified into cloud-contaminated or cloud-free pixels. Cloud-contaminated pixels
were then subclassified into thick clouds, thin clouds, optical cirrus, cloud edges and
cloud shadows, while cloud-free pixels were subclassified into water, barren lands
and vegetation.

3.1. Threshold test

For each of 24 study images, four pixels were sampled for each of eight possible
cloud-contaminated and cloud-free classes. TOA reflectance in channels 1 (VIS) and
2 (NIR), the computed NDVI, brightness temperature (BT) in channels 3, 4 and 5,
and the three angles were recorded for each sample pixel for threshold tests. The
tests were based on the published algorithms (Saunders and Kriebel 1988, Hutchison
et al. 1997). The algorithms included tests of VIS and NIR reflectance individually,
ratio of NIR to VIS, BT in channels 4 and 5 individually, and difference between
channels 3 and 4, as well as between channels 4 and 5. The published thresholds
were set up as 1 for the ratio of NIR to VIS, 233K for channel 4, and 5K for the
difference between channels 3 and 4. In this study, each of the published thresholds
was tested, and unpublished thresholds were justified using Texas data.

3.2. Accuracy assessment

In addition to the same pre-processing as the previous 24 test images, another
24 images selected for accuracy assessment were treated with the newly developed
algorithm for cloud removal. Pixels that failed any test algorithm were assigned a
specific cloud mask value to differentiate them from cloud-free pixels. Raw scenes
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served as reference data. Cloud-free scenes were treated as classification data for
accuracy assessment. For each of 24 raw scenes, eight pixels were sampled out from
each of five cloud-contaminated and three cloud-free classes. A total of 64 pixels was
selected from each raw scene. A location of each sampled pixel was recorded by row
and column numbers. Each sample from raw scenes was compared to the cloud-free
scenes at the same location.

4. Results and discussion
4.1. Threshold development

A total of 768 pixels, 480 cloud-contaminated pixels and 288 cloud-free pixels,
from 24 sampled images was used for a series of threshold tests. Most cloud detection
algorithms using solar reflectance data did not consider bidirectional reflectance
distribution function (BRDF). However, Li et al. (1996) found that the reflectance
was higher in the back scatter direction compared to the forward scatter direction
for the same land features, and concluded that this difference was due to the BRDF
effect. About half of the Texas data were in the forward scatter direction with a
relative azimuth angle close to 180°, while the other half were in the back scatter
direction with a relative azimuth angle close to 0°. Reflectance data sampled from
different scatter directions were used for developing appropriate thresholds.

4.1.1. Thresholds of channels 1 and 2

All of the sampled pixels were used for reflectance comparisons of channels 1
and 2 (figure 2). Our results indicated that cloud-free pixels had lower reflectances
between 0 and 0.3 in channels 1 (VIS) and 2 (NIR), whereas cloud-contaminated
pixels had higher reflectances and were distributed over large reflectance ranges
between 0 and 1.7. Overall, thick and solid clouds had much higher reflectance than
other cloud types. The thin cloud and cloud shadow pixels had similar reflectance
ranges as cloud-free pixels. Likewise, both cloud shadow and water pixels had a very
similar reflectance range; thus, most cloud shadow pixels were confused with water
pixels. In addition, some barren pixels were confused with cloud edge pixels. The
VIS and NIR reflectances were strongly correlated (R* about 0.90) for most cloud-
contaminated and cloud-free pixels over barren areas. This indicates that both solar
reflectance channels have a similar ability to detect cloudy pixels.

TOA reflectances of cloud-contaminated and cloud-free pixels were plotted
(figure 3). Results showed that some land cover types such as barren and vegetation
had NIR reflectance data similar to that of most cloudy pixels. Conversely, VIS
reflectance data were clearly different between most land pixels and most cloudy
pixels. The results were similar to those from previous studies. For example, Saunders
and Kriebel (1988) applied NIR reflectance data for cloud detection over sea, and
used VIS reflectance data over land features. The reason was that VIS data had
lower reflectance over land compared to NIR, which increased the contrast between
cloud and land. Since VIS reflectance data could increase the contrast between cloud
and land, channel 1 was selected as an appropriate channel from which to develop
the automated Texas cloud detection algorithm in this study.

The VIS reflectance data of cloud-free pixels were separated into two groups,
back scatter and forward scatter. Most VIS reflectance data over vegetative areas
were greater in back scatter direction than in forward scatter direction. For the water
and barren pixels, there was no significant difference on the reflectance data between
the two scatter directions. A suitable threshold value was required to differentiate
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cloud-contaminated from cloud-free pixels for all seasonal data over Texas. The
primary goal for finding such a threshold value was to maintain cloud-free pixels as
much as possible, while removing cloud-contaminated pixels. The threshold value
for Texas data was selected as 0.27 for channel 1 after several iterations and tests.
Channel 1 is mainly useful to detect solid and thick clouds, and is applicable for
detecting some of optically-thin clouds, optical cirrus and cloud edges over the
Texas region.

4.1.2. Test of brightness temperature difference

Yamanouchi and Kawaguchi (1992) proposed cloud detection techniques using
the brightness temperature (BT) difference between channels 3 (3.7 um) and 4 (11 pm)
during the sunlit season, while applying the difference between channels 4 and §
(12 um) irrespective of the season. The difference between channels 3 (T5) and 4 (T,)
worked well as a cloud discriminator because of high BT at 3.7 um (T;) and relatively
cold BT at Il gm (T,). Hutchison er al. (1997} also used difference of T; and T,
for effectively detecting optically-thin cirrus. The difference of T,-T, in figure 4
illustrated that cloud-contaminated pixels had higher temperature differences than
cloud-free pixels. Several cirrus and cloud edge pixels were mixed with barren pixels.
The cloud shadow pixels had difference values the same as vegetation and water
pixels. It was unexpected that some cloud-free water pixels had relatively high
temperature differences, while most of the water pixels had values close to 0. The
possible explanation is that some water bodies covered by thin clouds or haze cannot
be distinguished by human eye. The other possibility is that water pixels are mis-
classified as thin water clouds due to water vapour above water pixels. In addition,
a few barren ground pixels with high temperature differences due to bright surfaces,
such as deserts, were confused with clouds. A threshold ATc was defined for detecting
clouds where T;-T, > ATc. The ATc was assigned a value of 11 after several itera-
tions. This criterion is appropriate for detecting thin clouds. most optical cirrus, and
cloud edges over Texas.

Other studies by Saunders and Kriebel (1988) and Dech et al. (1998) used
brightness temperature differences between channel 4 (T,) and channel 5 (Ts) for
detecting thin cirrus and edges of thicker clouds. Differences between T, and Ts
were the only cloud detection technique applicable to both daytime and night-time
AVHRR data (Franga and Cracknell 1995). In contrast, results (figure 4) showed
that the differences between T,~Ts did not differentiate cloud-contaminated from
cloud-free pixels over Texas. Results (figure 4) showed that most thick cloud pixels
had negative temperature differences, and both cloud-contaminated and cloud-free
pixels had overlaps of T,~T5 between 0 and 10. In the current study, the algorithm
of T,~Ts was not adopted as one of the cloud detection steps for Texas.

4.1.3. Thresholds of channels 4 and 5

Brightness temperatures in channel 4 (T,4) and channel 5 (T) were plotted against
each other in figure 5. Linear relationships suggested that T, and T were strongly
correlated for each class. Most studies used channel 4 for cloud detection algorithms
instead of channel 5 because AVHRR data received from NOAA-6 —9 and —12
did not have a spectral information of 11.5-12.5um. Hence, channel 5 was not
analysed in this study. The general pattern emerged that most cloud-free areas had
a higher brightness temperature T, than cloud-contaminated areas, because clouds
were composed of cold particles such as large ice crystals. In addition, T, is sensitive
to atmospheric opacity. Both cloud edge and cloud shadow pixels had less or
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no cold particles, and had temperatures similar to cloud-free pixels. Similarly.
Yamanouchi and Kawaguchi (1992) concluded that it was very difficult to sct a
threshold to detect cloudy pixels in channel 4, because many cloud-contaminated
and cloud-free pixels had the same BT. Daytime brightness temperature was strongly
related to sunlit season and solar radiation. The maximum temperature occurs
during July or August, while the coldest temperature occurs in January or February.
In addition, the temperature fluctuated with changing weather conditions.
Temperatures were usually lower on rainy days and higher during sunny days. Qur
result suggests that temperature influenced by temporal and weather variables may
serve as an important index for manual cloud detection.

Hutchison et al. (1997) set the brightness temperature of —40 C (233 K) or colder
for channel 4 to detect ice (solid and thick) clouds. This threshold of 233K was
suitable to differentiate thick cloud pixels from other types of cloudy and cloud-free
pixels. Since cloudy pixels (except for cloud shadow pixels) can be identified using
the VIS reflectance and the difference between T, and T,, the inclusion of a T,
threshold was expected to improve the differentiation of cloud edge and cloud
shadow pixcls from cloud-free pixels. The cloud shadow pixels had the same T, as
water pixels. Morcover, several cloud edge pixels were overlapped with water and
vegetative pixels. Overall, the T, threshold alone cannot detect all the clouds over
Texas.

4.1.4. Test of ratio of channel 2 to channel 1

The ratio method of channel 2 reflectance (R,) to channel 1 reflectance (R,) was
previously applied by Saunders and Kriebel (1988). Several other studies also sug-
gested that this approach was useful. Franga and Cracknell (1995) concluded that
this approach could detect most thin cloudy pixels, and Hutchison et al. (1997)
applied this approach to detect cirrus clouds. The ratio Q=R,/R; was close to unity
for most cloudy pixels, less than 0.8 for most cloud-free water pixels, and greater
than 1.6 for clear vegetation pixels in Texas ({igure 6). Franca and Cracknell {1995)
concluded that the Q values over green vegetation were higher than unity owing to
the higher NIR reflectance than VIS reflectance. The VIS reflectance over sca was
much greater than NIR reflectance duc to the effect of the absorption of water in
the near-infrared range. Results indicated that the ratio was appropriate for differen-
tiating cloudy pixels from clear water and vegetative areas over Texas. However. this
approach failed to differentiate cloud-contaminated pixels from barren pixels. because
the ratio of both pixel types ranged between 0.8 and 1.6. Thus, a supplementary test
was added to correctly identify barren pixels from cloud-contaminated pixels. The
additional test took account of T,. The barren pixels had T, values greater than
290K, and could be differentiated from cloud edge and some cloud shadow pixels.
Pixels were treated as cloudy if the Q ratio fell between 0.8 and 1.6 and T, was less
than 290K. The main purpose of this step is to detect cloud edges and cloud
shadows.

4.1.5. Automated cloud detection algorithm

The cloud detection algorithm used for Texas included three major steps, TOA
reflectance of channel 1, difference of T; and T,, and ratio of R, to R,, associated
with T,. Image pixels that failed in any one of the steps were classified as cloud-
contaminated pixels. As a whole, the three major steps of the Texas cloud detection
algorithm did not effectively differentiate cloud shadow pixels from barren ground
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A couple of visible cloud edge pixels were treated as cloud-free pixels. The possible
explanation is that thin or broken cloud edges are smaller than the nominal size of
one pixel of 1km x 1 km. The reason for misidentification of cloud-free water pixels
might be caused by the drought situation during the hot summer in Texas. Small
lakes in central Texas could be dried out during summertime. Some clear bright
surfaces such as barren were mistreated as cloud-contaminated pixels, because both
had similar solar reflectance and brightness temperature. More studies are necessary
to improve cloud detection algorithms. The complete Texas cloud detection algorithm
is presented in figure 7.

5. Conclusion

The Texas automated cloud detection method was applied to individual images.
The accuracy of cloud detection was highly related to the threshold values for the
three tests. The chosen nominal threshold values were set to accommodate climate
conditions between the extreme hot summer and cold winter. The accuracy perform-
ance was influenced by image parameters, such as data acquisition time, weather
condition, solar zenith angle, satellite scan angle, scatter direction and sunlight.

Input AVHRR reflectancein channels 1 (R))
and 2 (R,), brightness temperature in
channels 3 (Ty) and4 (Ty)

:

Thick and solid cloud Yes
removal >
R, 2027
lNo
Yes
Optically-thin clouds and g
Winter optical cirrus removal Non-winter
T;-T,Z2 11K
lT Tl
Cloud edgeand cloud Cloud edge and cloud
shade pixels removal shade pixelsremoval | ves
— 0.83=<R/R,<16 08<R/MR, 216 [—W
and and
T,<290K T, < 298K
No\ ﬁo i
Yes Cloud-free pixels Cloud-contaminated pixels
&

Figure 7. Daytime automated cloud detection algorithm for Texas.
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An average of 11% of the cloud-contaminated pixels remained after cloud detec-
tion. Maximum value compositing may remove additional cloud-contaminated
pixels. A study found that maximum NDVI composites built from cloud-free AVHRR
data provided a smooth temporal profile during crop-growing seasons, whereas
traditional NDVI composites without the pre-process of cloud detection showed
irregular patterns caused mainly by cloud contamination (Chen et al. submitted).
Cloud removal is important for composite products. The near cloud-free daily
AVHRR scenes were appropriate for creating short interval composites for agri-
cultural crop monitoring and other short-term environmental change detection.

Some published cloud detection methods are not functional for Texas data. In
addition, thresholds for Texas data are different from those published values. Cloud
detection methods and thresholds vary depending on the weather conditions of the
study areas. Further research applying the Texas cloud detection algorithm to
neighbouring areas with similar weather conditions will be very useful for a regional
scale of environmental studies using AVHRR data.
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